MULTI-TENANT APPROACH

(0]

H.abs’

creative, refreshing, eutting edge

CONTENTS

1.
2.
2.1
2.2
23
2.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7

MULTI-TENANT APP WITH DATABASE PER TENANT ...ttt s

s W w

TENANT AALADESE ...ttt sttt sttt st e st eneeseensesebesteesesnnnsnneneensessessaees O
Data SEPATALION ..iiiiiii ittt ettt n et g e et e ettt et e e eanee e enne D
Database performance and reliabilityooooiiiioiee ettt et e e e eanes D
Database SCAlADIITY ...ooveeeeie et e e ettt e et e et e et e e s ae et aeeseeenteenteenteenseeaneeanee D
Deployment and MAINTENANCEoo.iiiiiiecieie e ree st e e e e e st e e e e aesee et e essee et ee et eeesseestesnsessseesssesnsesseesseesseeeses D
BACKUD AN MESTOIE .. ettt st ee st e s e e e e e e e s e e e e e e e eenseenseensaeasseestesntesnsesseesseesnsesseesseessaeesns D

FIGURES

Figure 1: Multi-tenant application with a database per tenant..... ..o 3

Figure 2: Example - Tenant A database is on Database Server 1. Tenant B and Tenant C databases are sharing
DAtabase SEIVEL 2. ..ocueiiciieiii ettt esras et e s eesaae s s e eaas e e s e e e e e ae e Rt e e b e e nneeR e e e eabe e nnnean e eeeanneenane s nrreenes 4

Figure 3: Example - All tenant databases are sharing Database Server L.......coocooviivieierceeieeice e e e e seeeseeesaeeneees D

© IT Labs 4521 PGA Blvd #224, 133 384 7368 @ contact@it-labs.com www.it-labs.com
Palm Beach Gardens, FL 33418

H.abs’

creative, refreshing, eutting edge

1. Document Purpose

The purpose of this document is to define and describe the multi-tenant implementation approach. Included are
the main characteristics of the proposed approach, commonly known as “multi-tenant application with database
per tenant” pattern.

2.0 Multi-tenant app with database per tenant

With the multi-tenant application with a database per tenant approach, there is one secure store that will hold the
tenants secure data (like the connection string to their database, or file storage etc.). Tenant separation is achieved
at the “Tenant handler” layer, where the application resolves which tenant data to use.

Database

Tenant A Tenant B

Database Database b

App

API request to:
https://[tenant_name].domain.com/api

A

Figure 1: Multi-tenant application with a database per tenant

© IT Labs 4521 PGA Blvd #224, +1373 384 7368 contact@it-labs.com www.it-labs.com
Palm Beach Gardens, FL 33418

(0]

a b S(H)

creative, refreshing, eutting edge

2.1 Client

The client application is not aware of multi-tenant implementation. This application will only use the tenant’s name
when accessing the server application. This is usually achieved by defining the server application’s subdomain for
each tenant, and the client application communicates with [tenant_name].app-domain/api.

2.2 Server Application

With database per tenant implementation, there is one application instance for all tenants. The application is aware
of the client’s tenant and knows what database to use for the client’s tenant. Tenant information is usually part of
the client’s request.

A separate layer in the application is responsible for reading the tenant-specific data (tenant_handler layer.) This
layer is using the secure store service (like AWS secrets manager) to read the tenant-specific database connection
string and database credentials, storing that information in the current context.

All other parts of the application are tenant unaware, and tenant separation is achieved at the database access
(database repository) layer. The repository layer is using the information from the current context to access the
tenant’s specific database instance.

2.3 Secure store service

The Secure store service is used to store and serve the tenant information. This service typically stores id, unique-
name, database address, and database credentials for the tenants, etc.

2.4 Tenant database

Each tenant database is responsible for storing and serving the tenant-specific applications. The application’s
repository layer is aware of the tenant-specific database, and it is using the information from the current context to
help the application’s domain layers.

Depending upon the requirements, the tenant’s database can be hosted on either a shared or a separate location.

Database Server 1 Database Server 2

Tenant C

Tenant A Tenant B
Database

Database Database

Figure 2: Example - Tenant A database is on Database Server 1. Tenant B and Tenant C databases are sharing Database Server 2.

© IT Labs 4521 PGA Blvd #224, 133 384 7368 o contact@it-labs.com o www.it-labs.com
Palm Beach Gardens, FL 33418

(0]

a b S(H)

creative, refreshing, eutting edge

Database Server 1

Tenant A Tenant B Tenant [n]

Database Database Database

Figure 3: Example - All tenant databases are sharing Database Server 1

3.0 Characteristics

3.1 Data separation

There are a couple of items which must be considered regarding data separation:

e For good cross-tenant data separation, data is separated in the specific tenant’s database, and there is no
mixing of data for different tenants.

¢ In the case of added complexity, where report(s) need to summarize data from all tenants, usually, some
additional reporting approach is implemented on top of the implementation.

3.2 Database performance and reliability

The database per tenant approach ensures better database performance. With this approach, data partitioning is
implemented from the highest level (the tenants.) Also, since data is separated per tenant, one indexing level is
avoided. With a multi-tenant database approach, all collections/tables will generate an index for the tenant
specification field.

Because the tenant’s instances are separated, if some issue arises with one tenant’s database, the application will
continue working for all the other tenants.

3.3 Implementation complexity

Most of the application is tenant unaware. Tenant specific functionality is isolated in the tenant-handler layer, and
this information is used in the data access (data repository) layer of the application. This ensures that there will be no
tenant-specific functionality across the different application domain layers.

3.4 Database scalability

For small databases, all tenants can share one database server resource. As database size and usage increase, the
hardware of the database server resource can be scaled up, or a specific tenant’s database can be separated onto a
new instance.

© IT Labs 4521 PGA Blvd #224, 133 384 7368 o contact@it-labs.com o www.it-labs.com
Palm Beach Gardens, FL 33418

@ rLabs’

3.5 SQL vs No-SQL databases

For No-SQL database engines, the process of creating a database and maintaining the database schema is generally
easier and more automated. With the correct database user permissions, as data comes into the system, the
application code can create both the database and the collections. Meaning that when defining a new tenant in the
system, the only thing that must be done is to define the tenant’s information in the main database. Then the
application will know how to start working for that tenant. For generating indexes and functions on the database level,
the solution will need to include procedure(s) for handling new tenants.

For SQL database engines, the process of defining a new tenant in the system will involve creating a database for the
tenant. This includes having database schema scripts for generating the tenant’s database schema, creating the new
database for the tenant, and executing the schema scripts on the new database.

3.6 Deployment and maintenance

The deployment procedure should cover all tenant databases. To avoid any future complications, all databases must
always be on the same schema version. When a new application version is released, databases changes will affect all
tenant instances.

In the process of defining maintenance functions and procedures, all tenant instances will be covered. It should be

noted that many tenants can result in extra work to maintain all the databases.

3.7 Backup and restore

A backup process should be defined for all tenant databases, which will result in additional work for the DB Admin
and/or DevOps team. However, by having well-defined procedures for backup and restoration, these procedures can
be performed on one tenant’s instance at a time without affecting all the other tenants.

4.0 References

A showcase implementation of the Multi-tenant approach:

https://github.com/IT-Labs/MultiTenant

© IT Labs 4521 PGA Blvd #224,
Palm Beach Gardens, FL 33418

+1323 384 7368 contact@it-labs.com www.it-labs.com

